A Markov jump process modelling animal group size statistics

Autor: Robert L. Pego, Maximilian Engel, Jian-Guo Liu, Pierre Degond
Přispěvatelé: Mathématiques pour l'Industrie et la Physique (MIP), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), department of mathematics, University of Maryland [College Park], University of Maryland System-University of Maryland System, Center for Nonlinear Analysis [Pittsburgh] (CNA), Carnegie Mellon University [Pittsburgh] (CMU), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), The Royal Society, Engineering & Physical Science Research Council (EPSRC)
Rok vydání: 2020
Předmět:
POPULATION BALANCE-EQUATIONS
DYNAMICS
Work (thermodynamics)
Population dynamics
q-bio.PE
General Mathematics
Population
Mathematics
Applied

self-consistent Markov process
COAGULATION
jump process
01 natural sciences
0101 Pure Mathematics
010104 statistics & probability
Stochastic differential equation
92D50
Simple (abstract algebra)
0102 Applied Mathematics
CONVERGENCE
DISTRIBUTIONS
65C30
Statistical physics
[MATH]Mathematics [math]
0101 mathematics
Quantitative Biology - Populations and Evolution
education
65C35
Mathematics
45J05
education.field_of_study
Science & Technology
fish schools
SCHEME
Applied Mathematics
010102 general mathematics
Populations and Evolution (q-bio.PE)
1502 Banking
Finance and Investment

70F45
AGGREGATION
self-consistent Markov process Mathematics Subject Classification (2010): 60J75
Connection (mathematics)
Nonlinear system
Distribution (mathematics)
FOS: Biological sciences
Physical Sciences
Jump process
numerics
Zdroj: Communications in Mathematical Sciences
Communications in Mathematical Sciences, International Press, 2020, 18, pp.55-89
Communications in Mathematical Sciences, 2020, 18, pp.55-89
ISSN: 1945-0796
1539-6746
DOI: 10.4310/cms.2020.v18.n1.a3
Popis: International audience; We translate a coagulation-framentation model, describing the dynamics of animal group size distributions , into a model for the population distribution and associate the nonlinear evolution equation with a Markov jump process of a type introduced in classic work of H. McKean. In particular this formalizes a model suggested by H.-S. Niwa [J. Theo. Biol. 224 (2003)] with simple coagulation and fragmentation rates. Based on the jump process, we develop a numerical scheme that allows us to approximate the equilibrium for the Niwa model, validated by comparison to analytical results by Degond et al. [J. Nonlinear Sci. 27 (2017)], and study the population and size distributions for more complicated rates. Furthermore, the simulations are used to describe statistical properties of the underlying jump process. We additionally discuss the relation of the jump process to models expressed in stochastic differential equations and demonstrate that such a connection is justified in the case of nearest-neighbour interactions, as opposed to global interactions as in the Niwa model.
Databáze: OpenAIRE