The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs
Autor: | Michele Rimoldi, Debora Impera, Stefano Pigola |
---|---|
Přispěvatelé: | Impera, D, Pigola, S, Rimoldi, M |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Property (philosophy) Applied Mathematics General Mathematics Reilly's formula 010102 general mathematics Elliptic pdes self-shrinkers intersection property half-space property 01 natural sciences self-shrinkers f-minimal hypersrufaces Frankel property 0103 physical sciences 010307 mathematical physics 0101 mathematics half-space type properties self-shrinkers Frankel property f-minimal hypersrufaces half-space type properties Reilly's formula Mathematics |
Popis: | We show that two properly embedded self-shrinkers in Euclidean space that are sufficiently separated at infinity must intersect at a finite point. The proof is based on a localized version of the Reilly formula applied to a suitable f-harmonic function with controlled gradient. In the immersed case, a new direct proof of the generalized half-space property is also presented. |
Databáze: | OpenAIRE |
Externí odkaz: |