Transmission of Leptosphaeria maculans from a cropping season to the following one

Autor: L. Bousset, Stéphane Jumel, Samuel Soubeyrand, Hervé Picault, V. Garreta
Přispěvatelé: Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Biostatistique et Processus Spatiaux (BioSP), Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Annals of Applied Biology
Annals of Applied Biology, Wiley, 2015, 166, pp.530-543. ⟨10.1111/aab.12205⟩
Annals of Applied Biology (166), 530-543. (2015)
Annals of Applied Biology, 2015, 166, pp.530-543. ⟨10.1111/aab.12205⟩
ISSN: 0003-4746
1744-7348
DOI: 10.1111/aab.12205⟩
Popis: International audience; Current modelling of inoculum transmission from a cropping season to the following one relies on the extrapolation of kernels estimated on data at short distances from punctual sources, because data collected at larger distances are scarce. We estimated the dispersal kernel of Leptosphaeria maculans ascospores from stubble left after harvest in the summer previous to newly sown oilseed rape fields, using phoma stem canker autumn disease severity. We built a dispersal model to analyse the data. Source strengths are described in the spatial domain covered by source fields by a log-Gaussian spatial process. Infection potentials in the following season are described in the space consisting of the target fields, by a convolution of sources and a power-exponential dispersal kernel. Data were collected on farmers' fields considered as sources in 2009 and 2011 (72 and 39 observation points) and as targets in 2010 and 2012 (172 and 200 points). We applied the Bayesian approach for model selection and parameter estimation. We obtained fat tail kernels for both data sets. This estimation is the first from data acquired over distances of 0 to 1000m, using several non-punctual inoculum sources. It opens the prospect of refining the existing simulators, or developing disease risk maps.
Databáze: OpenAIRE