Spatially and Intensity Adaptive Morphology
Autor: | Johan Debayle, Jc Pinoli |
---|---|
Přispěvatelé: | Centre Ingénierie et Santé (CIS-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Fédératif de Recherche en Sciences et Ingénierie de la Santé (IFRESIS-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-IFR143, Surfaces et Tissus Biologiques (STBio-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-CIS, Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Morphological gradient
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Adaptive morphology Top-hat transform Image processing Context (language use) 02 engineering and technology Mathematical morphology [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing connected operators 0202 electrical engineering electronic engineering information engineering generalized linear image processing Computer vision general adaptive neighborhood image processing [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering Electrical and Electronic Engineering Image restoration Mathematics Feature detection (computer vision) image filtering business.industry semi-flat morphology 020207 software engineering Adaptive filter Signal Processing 020201 artificial intelligence & image processing Artificial intelligence business stack filtering [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing |
Zdroj: | IEEE Journal of Selected Topics in Signal Processing IEEE Journal of Selected Topics in Signal Processing, IEEE, 2012, 6 (7), pp.820-829. ⟨10.1109/JSTSP.2012.2214762⟩ |
ISSN: | 1932-4553 |
DOI: | 10.1109/JSTSP.2012.2214762⟩ |
Popis: | International audience; In this paper, spatially and intensity adaptive morphology is introduced and studied in the context of the General Adaptive Neighborhood Image Processing (GANIP) approach. The combination of GAN (General Adaptive Neighborhood)-based filtering and semi-flat morphology is particularly efficient in the sense that the filtering is adaptive to the image spatial structures (structuring elements are spatially variant) and its activity is controlled according to the image intensities (level sets are processed at different scales). The resulting morphological filters show a high image processing performance while preserving the image regions and details without damaging its transitions. The effectiveness of these adaptive operators are practically highlighted on real application examples for image background removing, image restoration and image enhancement. |
Databáze: | OpenAIRE |
Externí odkaz: |