Convergence of the kinetic hydrostatic reconstruction scheme for the Saint Venant system with topography

Autor: Xavier Lhébrard, François Bouchut
Přispěvatelé: Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Zdroj: Mathematics of Computation
Mathematics of Computation, American Mathematical Society, 2021, 90 (329), pp.1119-1153. ⟨10.1090/mcom/3600⟩
ISSN: 1088-6842
0025-5718
DOI: 10.1090/mcom/3600
Popis: International audience; We prove the convergence of the hydrostatic reconstruction scheme with kinetic numerical flux for the Saint Venant system with Lipschitz continuous topography. We use a recently derived fully discrete sharp entropy inequality with dissipation, that enables us to establish an estimate in the inverse of the square root of the space increment ∆x of the L 2 norm of the gradient of approximate solutions. By Diperna's method we conclude the strong convergence towards bounded weak entropy solutions.
Databáze: OpenAIRE