Global strong solutions in $ {\mathbb{R}}^3 $ for ionic Vlasov-Poisson systems
Autor: | Mikaela Iacobelli, Megan Griffin-Pickering |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Numerical Analysis Euclidean space Structure (category theory) FOS: Physical sciences Ionic bonding Mathematical Physics (math-ph) Plasma Electron Type (model theory) Kinetic energy 01 natural sciences 010305 fluids & plasmas Ion 010101 applied mathematics Mathematics - Analysis of PDEs Physics::Plasma Physics Modeling and Simulation 0103 physical sciences FOS: Mathematics 0101 mathematics Mathematical Physics Analysis of PDEs (math.AP) Mathematical physics |
Zdroj: | Kinetic & Related Models, 2021, Vol.14(4), pp.571-597 [Peer Reviewed Journal] |
ISSN: | 1937-5077 |
DOI: | 10.3934/krm.2021016 |
Popis: | Systems of Vlasov-Poisson type are kinetic models describing dilute plasma. The structure of the model differs according to whether it describes the electrons or positively charged ions in the plasma. In contrast to the electron case, where the well-posedness theory for Vlasov-Poisson systems is well established, the well-posedness theory for ion models has been investigated more recently. In this article, we prove global well-posedness for two Vlasov-Poisson systems for ions, posed on the whole three-dimensional Euclidean space $\mathbb{R}^3$, under minimal assumptions on the initial data and the confining potential. 25 pages; minor changes |
Databáze: | OpenAIRE |
Externí odkaz: |