Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners
Autor: | Christian Licht, Thibaut Weller |
---|---|
Přispěvatelé: | Mathématiques et Modélisations en Mécanique (M3), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Mahidol University [Bangkok], Centre of Excellence in Mathematics |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Marketing
Physics Asymptotic analysis Reduction of dimension Orders of magnitude (temperature) Strategy and Management Mathematical analysis Periodic distribution Variational convergence 02 engineering and technology Periodic homogenization Hard abutting and rigidification of plates Asymptotic modelling 020303 mechanical engineering & transports 0203 mechanical engineering [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] Media Technology General Materials Science Energy (signal processing) |
Zdroj: | Comptes Rendus Mécanique Comptes Rendus Mécanique, Elsevier, 2019, 347 (8), pp.555-560. ⟨10.1016/j.crme.2019.07.001⟩ |
DOI: | 10.1016/j.crme.2019.07.001⟩ |
Popis: | International audience; We derive several models of thin plates equipped with a periodic distribution of stiffeners. Depending on the orders of magnitude of the different parameters involved, diverse situations arise, from classical Kirchhoff-Love behaviour with additional energy term to full rigidification. |
Databáze: | OpenAIRE |
Externí odkaz: |