K��hlerness of moduli spaces of stable sheaves over non-projective K3 surfaces
Autor: | Arvid Perego |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Algebra and Number Theory compact hyperkahler manifolds moduli spaces of sheaves K3 surfaces Moduli space moduli spaces of sheaves compact hyperkahler manifolds K3 surfaces Mathematics::Algebraic Geometry FOS: Mathematics Geometry and Topology Mathematics::Differential Geometry Projective test Mathematics::Symplectic Geometry Algebraic Geometry (math.AG) Mathematics |
DOI: | 10.48550/arxiv.1703.02001 |
Popis: | We show that a moduli space of slope-stable sheaves over a K3 surface is an irreducible hyperk��hler manifold if and only if its second Betti number is the sum of its Hodge numbers $h^{2,0}$, $h^{1,1}$ and $h^{0,2}$. 30 pages |
Databáze: | OpenAIRE |
Externí odkaz: |