Photovoltaic and Photovoltaic Thermal Technologies for Refrigeration Purposes: An Overview

Autor: Ali Sulaiman Alsagri
Rok vydání: 2022
Předmět:
Zdroj: Arabian Journal for Science and Engineering
ISSN: 2191-4281
2193-567X
DOI: 10.1007/s13369-021-06534-2
Popis: Refrigeration systems have a broad range of applications, playing a critical role in human life. Especially, vaccine preservation in rural regions has become more critical than in the past during the COVID19 era. In this sense, meeting the cooling process's energy need with renewable energy is critical, as the grid cannot support it. Thus, solar energy has been extensively studied for use in refrigeration cycles. Compression, absorption, adsorption, desiccant, and ejector refrigeration cycles are frequently used in this configuration. This article discusses multiple studies showing various attributes' impact on a system's overall efficiency. Most previous reviews did not cover PV with refrigeration cycles. So, this paper surveys the literature on PV-powered cooling cycles. For better classification, PV technologies are categorized into three types: PV, PVT, and CPVT. With this regard, CPVTs still have a way to progress due to a lack of studies compared to PV. The works are divided into three main sections as Exergy Studies, Experimental Studies, and Simulation and Numerical Studies. This review paper categorizes and rates refrigeration-assisted solar systems based on exergy destruction, exergy efficiency, and COP of cooling cycles. The results showed that PV panels have the highest exergy destruction in most of the systems. It is concluded that using PV technologies has a great potential to supply cooling demand, especially in a hot climate condition. Moreover, the study's findings are anticipated to aid designers in scaling up photovoltaic-based cooling systems, resulting in more efficient and sustainable designs.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje