Intuitionistic non-normal modal logics: A general framework
Autor: | Charles Grellois, Nicola Olivetti, Tiziano Dalmonte |
---|---|
Přispěvatelé: | Logique, Interaction, Raisonnement et Inférence, Complexité, Algèbre (LIRICA), Laboratoire d'Informatique et Systèmes (LIS), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Dalmonte, Tiziano |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
FOS: Computer and information sciences
Computer Science - Logic in Computer Science [INFO.INFO-LO] Computer Science [cs]/Logic in Computer Science [cs.LO] Computer science [INFO] Computer Science [cs] Modal operator 0603 philosophy ethics and religion 01 natural sciences Constructive Computer Science::Logic in Computer Science FOS: Mathematics [INFO]Computer Science [cs] 0101 mathematics 03B45 010102 general mathematics Sequent calculus Semantic framework [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] 06 humanities and the arts Mathematics - Logic Logic in Computer Science (cs.LO) Decidability Algebra Philosophy Modal TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS 060302 philosophy Dynamic logic (modal logic) Non normality Logic (math.LO) |
Zdroj: | Journal of Philosophical Logic Journal of Philosophical Logic, Springer Verlag, 2020 Journal of Philosophical Logic, 2020 |
ISSN: | 0022-3611 1573-0433 |
Popis: | We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more important case of bimodal logics, which contain both modal operators. In this case we define several interactions between Necessity and Possibility of increasing strength, although weaker than duality. For all logics we provide both a Hilbert axiomatisation and a cut-free sequent calculus, on its basis we also prove their decidability. We then give a semantic characterisation of our logics in terms of neighbourhood models. Our semantic framework captures modularly not only our systems but also already known intuitionistic non-normal modal logics such as Constructive K (CK) and the propositional fragment of Wijesekera's Constructive Concurrent Dynamic Logic. Preprint |
Databáze: | OpenAIRE |
Externí odkaz: |