Bounded VC-Dimension Implies the Schur-Erdős Conjecture

Autor: Jacob Fox, Andrew Suk, János Pach
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Combinatorica
DOI: 10.4230/lipics.socg.2020.46
Popis: In 1916, Schur introduced the Ramsey number r(3;m), which is the minimum integer n > 1 such that for any m-coloring of the edges of the complete graph K_n, there is a monochromatic copy of K₃. He showed that r(3;m) ≤ O(m!), and a simple construction demonstrates that r(3;m) ≥ 2^Ω(m). An old conjecture of Erdős states that r(3;m) = 2^Θ(m). In this note, we prove the conjecture for m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set system induced by the neighborhoods of the vertices with respect to each color class has bounded VC-dimension.
LIPIcs, Vol. 164, 36th International Symposium on Computational Geometry (SoCG 2020), pages 46:1-46:8
Databáze: OpenAIRE