SWMM-UrbanEVA: A Model for the Evapotranspiration of Urban Vegetation

Autor: Mathias Uhl, Birgitta Hörnschemeyer, Malte Henrichs
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Water
Volume 13
Issue 2
Water, Vol 13, Iss 243, p 243 (2021)
ISSN: 2073-4441
DOI: 10.3390/w13020243
Popis: Urban hydrology has so far lacked a suitable model for a precise long-term determination of evapotranspiration (ET) addressing shading and vegetation-specific dynamics. The proposed model &ldquo
SWMM-UrbanEVA&rdquo
is fully integrated into US EPA&rsquo
s Stormwater Management Model (SWMM) and consists of two submodules. Submodule 1, &ldquo
Shading&rdquo
considers the reduction in potential ET due to shading effects. Local variabilities of shading impacts can be addressed for both pervious and impervious catchments. Submodule 2, &ldquo
Evapotranspiration&rdquo
allows the spatio-temporal differentiated ET simulation of vegetation and maps dependencies on vegetation, soil, and moisture conditions which are necessary for realistically modeling vegetation&rsquo
s water balance. The model is tested for parameter sensitivities, validity, and plausibility of model behaviour and shows good model performance for both submodules. Depending on location and vegetation, remarkable improvements in total volume errors Vol (from Vol = 0.59 to &minus
0.04% for coniferous) and modeling long-term dynamics, measured by the Nash&ndash
Sutcliffe model efficiency (NSE) (from NSE = 0.47 to 0.87 for coniferous) can be observed. The most sensitive model inputs to total ET are the shading factor KS and the crop factor KC. Both must be derived very carefully to minimize volume errors. Another focus must be set on the soil parameters since they define the soil volume available for ET. Process-oriented differentiation between ET fluxes interception evaporation, transpiration, and soil evaporation, using the leaf area index, behaves realistically but shows a lack in volume errors. Further investigations on process dynamics, validation, and parametrization are recommended.
Databáze: OpenAIRE