The Lattice of Congruences of a Finite Line Frame

Autor: Daniel Penazzi, Pedro Sánchez Terraf, Miguel Campercholi, Carlos Areces
Rok vydání: 2015
Předmět:
FOS: Computer and information sciences
Computer Science - Logic in Computer Science
Logic
Matemáticas
Mathematics::Number Theory
0102 computer and information sciences
01 natural sciences
Upper and lower bounds
Theoretical Computer Science
MODAL ALGEBRA
Matemática Pura
purl.org/becyt/ford/1 [https]
Combinatorics
Arts and Humanities (miscellaneous)
Lattice (order)
FOS: Mathematics
Equivalence relation
BISIMULATION EQUIVALENCE
LATTICE OF SUBALGEBRAS
0101 mathematics
Bisimulation
Physics
ALGEBRAIC FUNCTION
010102 general mathematics
purl.org/becyt/ford/1.1 [https]
Mathematics - Logic
purl.org/becyt/ford/1.2 [https]
Congruence relation
F.4.1
F.1.2
Ciencias de la Computación
Logic in Computer Science (cs.LO)
Join and meet
Kripke frame
010201 computation theory & mathematics
Hardware and Architecture
PERMUTING RELATIONS
Ciencias de la Computación e Información
03B45 (Primary)
06B10
06E25
03B70 (Secondary)

Logic (math.LO)
Software
CIENCIAS NATURALES Y EXACTAS
Zdroj: CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
DOI: 10.48550/arxiv.1504.01789
Popis: Let $\mathbf{F}=\left\langle F,R\right\rangle $ be a finite Kripke frame. A congruence of $\mathbf{F}$ is a bisimulation of $\mathbf{F}$ that is also an equivalence relation on F. The set of all congruences of $\mathbf{F}$ is a lattice under the inclusion ordering. In this article we investigate this lattice in the case that $\mathbf{F}$ is a finite line frame. We give concrete descriptions of the join and meet of two congruences with a nontrivial upper bound. Through these descriptions we show that for every nontrivial congruence $\rho$, the interval $[\mathrm{Id_{F},\rho]}$ embeds into the lattice of divisors of a suitable positive integer. We also prove that any two congruences with a nontrivial upper bound permute.
Comment: 31 pages, 11 figures. Expanded intro, conclusions rewritten. New, less geometrical, proofs of Lemma 19 and (former) Lemma 34
Databáze: OpenAIRE