Irregular wave propagation with a 2DH Boussinesq-type model and an unstructured finite volume scheme
Autor: | Argiris I. Delis, Maria Kazolea |
---|---|
Přispěvatelé: | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Technical University of Crete [Chania], Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest |
Jazyk: | angličtina |
Předmět: |
Finite volume method
010504 meteorology & atmospheric sciences Wave propagation [SDE.IE]Environmental Sciences/Environmental Engineering Finite volumes General Physics and Astronomy Breaking wave Unstructured meshes Mechanics Solver 01 natural sciences 010305 fluids & plasmas Shock (mechanics) Transformation (function) Irregular waves Wave-breaking [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] Extended Boussinesq-type equations 0103 physical sciences Wave height Mathematical Physics ComputingMilieux_MISCELLANEOUS 0105 earth and related environmental sciences Mathematics Swash |
Zdroj: | European Journal of Mechanics-B/Fluids European Journal of Mechanics-B/Fluids, 2018, 72, pp.432-448. ⟨10.1016/j.euromechflu.2018.07.009⟩ European Journal of Mechanics-B/Fluids, Elsevier, 2018, 72, pp.432-448. ⟨10.1016/j.euromechflu.2018.07.009⟩ |
ISSN: | 0997-7546 1873-7390 |
DOI: | 10.1016/j.euromechflu.2018.07.009⟩ |
Popis: | Summarization: The application and validation, with respect to the transformation, breaking and run-up of irregular waves, of an unstructured high-resolution finite volume (FV) numerical solver for the 2D extended Boussinesq-type (BT) equations of Nwogu (1993) is presented. The numerical model is based on the combined FV approximate solution of the BT model and that of the nonlinear shallow water equations (NSWE) when wave breaking emerges. The FV numerical scheme satisfies the desired properties of well-balancing, for flows over complex bathymetries and in presence of wet/dry fronts, and shock-capturing for an intrinsic representation of wave breaking, that is handled as a shock by the NSWE. Several simulations and comparisons with experimental data show that the model is able to simulate wave height variations, mean water level setup, wave run-up, swash zone oscillations and the generation of near-shore currents with satisfactory accuracy. Presented on: European Journal of Mechanics - B/Fluids |
Databáze: | OpenAIRE |
Externí odkaz: |