GRADES: Gradient Descent for Similarity Caching

Autor: Anirudh Sabnis, Emilio Leonardi, Ramesh Sitaraman, Tareq SI SALEM, Michele Garetto, Giovanni Neglia
Přispěvatelé: University of Massachusetts [Amherst] (UMass Amherst), University of Massachusetts System (UMASS), Université Côte d'Azur (UCA), Network Engineering and Operations (NEO ), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Università degli studi di Torino (UNITO), Politecnico di Torino - Dipartimento di Elettronica (Politecnico di Torino) (CERCOM), Università degli studi di Torino = University of Turin (UNITO), Politecnico di Torino = Polytechnic of Turin (Polito)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: IEEE International Conference on Computer Communications (INFOCOM 2021)
IEEE International Conference on Computer Communications (INFOCOM 2021), May 2021, Virtual Conference, United States
IEEE INFOCOM 2021-IEEE Conference on Computer Communication
INFOCOM
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking, 2022, pp.1-12. ⟨10.1109/TNET.2022.3187044⟩
INFOCOM 2021-IEEE International Conference on Computer Communications
INFOCOM 2021-IEEE International Conference on Computer Communications, May 2021, Virtual Conference, United States. ⟨10.1109/INFOCOM42981.2021.9488757⟩
ISSN: 1063-6692
DOI: 10.1109/TNET.2022.3187044⟩
Popis: International audience; A similarity cache can reply to a query for an object with similar objects stored locally. In some applications of similarity caches, queries and objects are naturally represented as points in a continuous space. This is for example the case of 360 • videos where user's head orientation-expressed in spherical coordinates-determines what part of the video needs to be retrieved, or of recommendation systems where a metric learning technique is used to embed the objects in a finite dimensional space with an opportune distance to capture content dissimilarity. Existing similarity caching policies are simple modifications of classic policies like LRU, LFU, and qLRU and ignore the continuous nature of the space where objects are embedded. In this paper, we propose GRADES, a new similarity caching policy that uses gradient descent to navigate the continuous space and find appropriate objects to store in the cache. We provide theoretical convergence guarantees and show GRADES increases the similarity of the objects served by the cache in both applications mentioned above.
Databáze: OpenAIRE