Mechanically robust electrospun hydrogel scaffolds crosslinked via supramolecular interactions
Autor: | Noortje A.M. Bax, Parinaz Goodarzy Fard, Björne B. Mollet, Patricia Y. W. Dankers, Sergio Spaans, Carlijn V. C. Bouten |
---|---|
Přispěvatelé: | Soft Tissue Biomech. & Tissue Eng., Biomedical Engineering |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Polymers and Plastics
02 engineering and technology mechanical properties 01 natural sciences Gelatin Polyethylene Glycols chemistry.chemical_compound Tissue engineering Materials Chemistry Myocytes Cardiac Fiber Composite material Cross-Linking Reagents/chemistry chemistry.chemical_classification Tissue Scaffolds Hydrogels Polymer 021001 nanoscience & nanotechnology Electrospinning Polyethylene Glycols/chemistry Cross-Linking Reagents Self-healing hydrogels 0210 nano-technology Cardiac Biotechnology Gelatin/chemistry Materials science food.ingredient Supramolecular chemistry Bioengineering macromolecular substances 010402 general chemistry Cell Line Biomaterials Tissue Scaffolds/chemistry food hybrid hydrogels Humans Myocytes Tissue Engineering technology industry and agriculture electrospun meshes Epithelial Cells Hydrogels/chemistry 0104 chemical sciences chemistry Chemical engineering supramolecular biomaterials Ethylene glycol |
Zdroj: | Macromolecular Bioscience, 17(9):1700053. Wiley-VCH Verlag |
ISSN: | 1616-5187 |
Popis: | One of the major challenges in the processing of hydrogels based on poly(ethylene glycol) (PEG) is to create mechanically robust electrospun hydrogel scaffolds without chemical crosslinking postprocessing. In this study, this is achieved by the introduction of physical crosslinks in the form of supramolecular hydrogen bonding ureido-pyrimidinone (UPy) moieties, resulting in chain-extended UPy-PEG polymers (CE-UPy-PEG) that can be electrospun from organic solvent. The resultant fibrous meshes are swollen in contact with water and form mechanically stable, elastic hydrogels, while the fibrous morphology remains intact. Mixing up to 30 wt% gelatin with these CE-UPy-PEG polymers introduce bioactivity into these scaffolds, without affecting the mechanical properties. Manipulating the electrospinning parameters results in meshes with either small or large fiber diameters, i.e., 0.63 ± 0.36 and 2.14 ± 0.63 µm, respectively. In that order, these meshes provide support for renal epithelial monolayer formation or a niche for the culture of cardiac progenitor cells. |
Databáze: | OpenAIRE |
Externí odkaz: |