Solitary Waves for a Class of Quasilinear Schrödinger Equations Involving Vanishing Potentials
Autor: | Elisandra Gloss, João Marcos do Ó, Cláudia R. Santana |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Scopus-Elsevier |
ISSN: | 2169-0375 1536-1365 |
DOI: | 10.1515/ans-2015-0308 |
Popis: | In this paper we study the existence of weak positive solutions for the following class of quasilinear Schrödinger equations −Δu + V(x)u − [Δ(u2)]u = h(u) in ℝN, where h satisfies some “mountain-pass” type assumptions and V is a nonnegative continuous function. We are interested specially in the case where the potential V is neither bounded away from zero, nor bounded from above. We give a special attention to the case when V may eventually vanish at infinity. Our arguments are based on penalization techniques, variational methods and Moser iteration scheme. |
Databáze: | OpenAIRE |
Externí odkaz: |