Algebraic hyperbolic spline quasi-interpolants and applications

Autor: Abdelleh Lamnii, Driss Sbibih, Ahmed Zidna, M. Lamnii, Salah Eddargani
Přispěvatelé: Université Mohamed 1 Oujda MAROC, Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Université de Lorraine (UL)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics, Elsevier, 2019, 347, pp.196-209. ⟨10.1016/j.cam.2018.08.018⟩
ISSN: 0377-0427
DOI: 10.1016/j.cam.2018.08.018⟩
Popis: In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented.
Databáze: OpenAIRE