Algebraic hyperbolic spline quasi-interpolants and applications
Autor: | Abdelleh Lamnii, Driss Sbibih, Ahmed Zidna, M. Lamnii, Salah Eddargani |
---|---|
Přispěvatelé: | Université Mohamed 1 Oujda MAROC, Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Université de Lorraine (UL) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Applied Mathematics
Hyperbolic function Algebraic hyperbolic spline Marsden's identity Quasi-interpolant Quadrature rule 010103 numerical & computational mathematics 01 natural sciences Quadrature (mathematics) 010101 applied mathematics Algebra Computational Mathematics Spline (mathematics) [INFO]Computer Science [cs] 0101 mathematics Algebraic number ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics, Elsevier, 2019, 347, pp.196-209. ⟨10.1016/j.cam.2018.08.018⟩ |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2018.08.018⟩ |
Popis: | In this paper, a construction of Marsden’s identity for UAH B-splines (i.e. Uniform Algebraic Hyperbolic B-splines) is developed and a clear proof is given. With the help of this identity, quasi-interpolant schemes that produce the space of algebraic hyperbolic functions are derived. Efficient quadrature rules, based on integrating some of these quasi-interpolant schemes, are constructed and studied. Numerical results that illustrate the effectiveness of these rules are presented. |
Databáze: | OpenAIRE |
Externí odkaz: |