Weight $q$-multiplicities for representations of the exceptional Lie algebra $\mathfrak{g}_2$

Autor: Gordon Rojas Kirby, Jerrell Cockerham, Marissa Loving, Melissa Gutiérrez González, Pamela E. Harris, Joseph Rennie, Amaury V. Miniño
Rok vydání: 2020
Předmět:
Zdroj: Bull. Belg. Math. Soc. Simon Stevin 27, no. 5 (2020), 641-662
ISSN: 1370-1444
DOI: 10.36045/j.bbms.200317
Popis: Given a simple Lie algebra $\mathfrak{g}$, Kostant's weight $q$-multiplicity formula is an alternating sum over the Weyl group whose terms involve the $q$-analog of Kostant's partition function. For $\xi$ (a weight of $\mathfrak{g}$), the $q$-analog of Kostant's partition function is a polynomial-valued function defined by $\wp_q(\xi)=\sum c_i q^i$ where $c_i$ is the number of ways $\xi$ can be written as a sum of $i$ positive roots of $\mathfrak{g}$. In this way, the evaluation of Kostant's weight $q$-multiplicity formula at $q = 1$ recovers the multiplicity of a weight in a highest weight representation of $\mathfrak{g}$. In this paper, we give closed formulas for computing weight $q$-multiplicities in a highest weight representation of the exceptional Lie algebra $\mathfrak{g}_2$.
Comment: 17 pages, 1 figure, tables
Databáze: OpenAIRE