One-to-one correspondence between thermal structure factors and coupling constants of general bilinear Hamiltonians
Autor: | Bruno Murta, J. Fernández-Rossier |
---|---|
Přispěvatelé: | Universidad de Alicante. Departamento de Física Aplicada, Grupo de Nanofísica |
Rok vydání: | 2022 |
Předmět: |
Hamiltonians
Condensed Matter - Mesoscale and Nanoscale Physics Física de la Materia Condensada Statistical Mechanics (cond-mat.stat-mech) Coupling constants Mesoscale and Nanoscale Physics (cond-mat.mes-hall) FOS: Physical sciences One-to-one relation Condensed Matter - Statistical Mechanics Thermal structure factors |
Zdroj: | RUA. Repositorio Institucional de la Universidad de Alicante Universidad de Alicante (UA) |
DOI: | 10.48550/arxiv.2203.02437 |
Popis: | A theorem that establishes a one-to-one relation between zero-temperature static spin-spin correlators and coupling constants for a general class of quantum spin Hamiltonians bilinear in the spin operators has been recently established by J. Quintanilla, using an argument in the spirit of the Hohenberg-Kohn theorem in density functional theory. Quintanilla's theorem gives a firm theoretical foundation to quantum spin Hamiltonian learning using spin structure factors as input data. Here we extend the validity of the theorem in two directions. First, following the same approach as Mermin, the proof is extended to the case of finite-temperature spin structure factors, thus ensuring that the application of this theorem to experimental data is sound. Second, we note that this theorem applies to all types of Hamiltonians expressed as sums of bilinear operators, so that it can also relate the density-density correlators to the Coulomb matrix elements for interacting electrons in the lowest Landau level. Comment: 4 pages |
Databáze: | OpenAIRE |
Externí odkaz: |