Approximating and computing nonlinear matrix differential models
Autor: | Jacinto Javier Ibáñez, Jorge Sastre, Michael M. Tung, Emilio Defez |
---|---|
Rok vydání: | 2012 |
Předmět: |
Information retrieval
Theoretical computer science Notice Computer science media_common.quotation_subject Matrix (music) Volume (computing) Process (computing) First-order matrix differential equations Higher-order matrix splines Computer Science Applications Nonlinear system Disk formatting Matrix differential models Modeling and Simulation Modelling and Simulation TEORIA DE LA SEÑAL Y COMUNICACIONES CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL Quality (business) Differential (infinitesimal) MATEMATICA APLICADA LENGUAJES Y SISTEMAS INFORMATICOS media_common |
Zdroj: | RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia instname |
ISSN: | 0895-7177 |
DOI: | 10.1016/j.mcm.2011.11.060 |
Popis: | Differential matrix models are an essential ingredient of many important scientific and engineering applications. In this work, we propose a procedure to represent the solutions of first-order matrix differential equations Y(x) = f(x, Y(x)) with approximate matrix splines. For illustration of the method, we choose one scalar example, a simple vector model, and finally a Sylvester matrix differential equation as a test. This work has been supported by grant PAID-06-11-2020 from the Universitat Politecnica de Valencia, Spain. |
Databáze: | OpenAIRE |
Externí odkaz: |