Photoswitchable Superabsorbency Based on Nanocellulose Aerogels
Autor: | Riitta Silvennoinen, Mikko Ritala, Marjo Kettunen, Jani Sainio, Viljami Pore, Tom Lindström, Nikolay Houbenov, Antti Nykänen, Mikael Ankerfors, Olli Ikkala, Marianna Kemell, Robin H. A. Ras, Janne Ruokolainen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Materials science
ta221 02 engineering and technology Chemical vapor deposition 010402 general chemistry 01 natural sciences Nanocellulose Biomaterials Contact angle chemistry.chemical_compound Electrochemistry superabsorbents Composite material ta218 Aqueous solution Nanocomposite ta214 ta114 Aerogel 021001 nanoscience & nanotechnology Condensed Matter Physics 0104 chemical sciences Electronic Optical and Magnetic Materials chemistry Titanium dioxide Wetting 0210 nano-technology |
Zdroj: | Advanced Functional Materials |
ISSN: | 1616-301X |
DOI: | 10.1002/adfm.201001431 |
Popis: | Chemical vapor deposition of a thin titanium dioxide (TiO2) film on lightweight native nanocellulose aerogels offers a novel type of functional material that shows photoswitching between water-superabsorbent and water-repellent states. Cellulose nanofibrils (diameters in the range of 5–20 nm) with native crystalline internal structures are topical due to their attractive mechanical properties, and they have become relevant for applications due to the recent progress in the methods of their preparation. Highly porous, nanocellulose aerogels are here first formed by freeze-drying from the corresponding aqueous gels. Well-defined, nearly conformal TiO2 coatings with thicknesses of about 7 nm are prepared by chemical vapor deposition on the aerogel skeleton. Weighing shows that such TiO2-coated aerogel specimens essentially do not absorb water upon immersion, which is also evidenced by a high contact angle for water of 140° on the surface. Upon UV illumination, they absorb water 16 times their own weight and show a vanishing contact angle on the surface, allowing them to be denoted as superabsorbents. Recovery of the original absorption and wetting properties occurs upon storage in the dark. That the cellulose nanofibrils spontaneously aggregate into porous sheets of different length scales during freeze-drying is relevant: in the water-repellent state they may stabilize air pockets, as evidenced by a high contact angle, in the superabsorbent state they facilitate rapid water-spreading into the aerogel cavities by capillary effects. The TiO2-coated nanocellulose aerogels also show photo-oxidative decomposition, i.e., photocatalytic activity, which, in combination with the porous structure, is interesting for applications such as water purification. It is expected that the present dynamic, externally controlled, organic/inorganic aerogels will open technically relevant approaches for various applications. |
Databáze: | OpenAIRE |
Externí odkaz: |