Effect of co-fermentation system with isolated new yeasts on soymilk: microbiological, physicochemical, rheological, aromatic, and sensory characterizations

Autor: Sameh A. Korma, Li Li, Mohamed Ghamry, Qiyang Zhou, Peipei An, Khaled A. E. Abdrabo, Muhammad Faisal Manzoor, Abdur Rehman, Sobia Niazi, Ilaria Cacciotti
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Braz J Microbiol
Popis: The beany flavor adversely influences consumer acceptance of soymilk (SM) products. Thus, in this work, the co-fermentation of isolated new yeasts (Kluyveromyces marxianus SP-1, Candida ethanolica ATW-1, and Pichia amenthionina Y) and Kluyveromyces marxianus K (a commercial yeast) along with an XPL-1 starter (including five strains of lactic acid bacteria (LAB)) was utilized to mend the beany flavor of fermented SM (FSM) beverages. Probiotic count, pH, titratable acidity, syneresis, water holding capacity, rheological characteristics, and sensory attributes were investigated. Furthermore, the free amino acids, nucleotides, and volatile compounds (VCs) were analyzed, also presenting the collected VC data by exploiting a principal component analysis (PCA) and a heatmap with a hierarchical cluster analysis. The co-fermentation with Kluyveromyces marxianus SP-1 and K remarkably enhanced the LAB strain growth and acid production, improving the rheological attributes, whereas that of yeast along with XPL-1 as a mullite starter could reduce the beany odor. PCA chart displayed that higher amounts of alcohols, ketones, acids, and esters that significantly improved the flavor quality of FSM beverages were generated throughout the co-fermentation process. The co-fermentation with Pichia amenthionina Y generated the highest acetoin (36.19%) and diacetyl (2.02%), thus improving the overall acceptance of FSM, as well as the sensory characteristics of FSM beverages with the highest umami, sweet, odorless amino acids, and umami nucleotides, and the lowest content of alcohol and inosine. Taken together, the co-fermentation of Pichia amenthionina Y along with XPL-1 within SM provides novel insights regarding the development of FSM and fermented beverages. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42770-022-00773-7.
Databáze: OpenAIRE