Convergence of Nonperturbative Approximations to the Renormalization Group
Autor: | Hugues Chaté, Bertrand Delamotte, Maroje Marohnić, Ivan Balog, Nicolás Wschebor |
---|---|
Přispěvatelé: | Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
dimension: 3 FOS: Physical sciences General Physics and Astronomy expansion: derivative Type (model theory) 01 natural sciences 0103 physical sciences Convergence (routing) Ising model Applied mathematics Order (group theory) 010306 general physics numerical calculations Condensed Matter - Statistical Mechanics Mathematics etc Statistical Mechanics (cond-mat.stat-mech) General Physics: Statistical and Quantum Mechanics 010308 nuclear & particles physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] approximation: nonperturbative Function (mathematics) Renormalization group 16. Peace & justice [PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] High Energy Physics - Theory (hep-th) functional renormalization group Ising model derivative expansion Quantum Information Radius of convergence renormalization group Critical exponent |
Zdroj: | Phys.Rev.Lett. Phys.Rev.Lett., 2019, 123 (24), pp.240604. ⟨10.1103/PhysRevLett.123.240604⟩ |
DOI: | 10.1103/PhysRevLett.123.240604⟩ |
Popis: | We provide analytical arguments showing that the non-perturbative approximation scheme to Wilson's renormalisation group known as the derivative expansion has a finite radius of convergence. We also provide guidelines for choosing the regulator function at the heart of the procedure and propose empirical rules for selecting an optimal one, without prior knowledge of the problem at stake. Using the Ising model in three dimensions as a testing ground and the derivative expansion at order six, we find fast convergence of critical exponents to their exact values, irrespective of the well-behaved regulator used, in full agreement with our general arguments. We hope these findings will put an end to disputes regarding this type of non-perturbative methods. 8 pages, 4 figures |
Databáze: | OpenAIRE |
Externí odkaz: |