Quantifying Transition Zone Radiative Effects in Longwave Radiation Parameterizations
Autor: | Babak Jahani, Josep-Abel González, Josep Calbó |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (Espanya) |
Rok vydání: | 2020 |
Předmět: |
Radiació atmosfèrica
Aerosols radioactius Longwave radiation Atmospheric sciences Aerosol Radiative effect Geophysics Transition zone Radiació -- Mesurament Radiative transfer Radiation -- Measurement General Earth and Planetary Sciences Environmental science Atmospheric radiation Aerosols Radioactive |
Zdroj: | Geophysical Research Letters, 2020, vol. 47, núm. 22, p. e2020GL090408 Articles publicats (D-F) Jahani, Babak Calbó Angrill, Josep González Gutiérrez, Josep Abel 2020 Quantifying Transition Zone Radiative Effects in Longwave Radiation Parameterizations Geophysical Research Letters 47 22 e2020GL090408 DUGiDocs – Universitat de Girona instname |
ISSN: | 1944-8007 0094-8276 |
DOI: | 10.1029/2020gl090408 |
Popis: | The change in the state of sky from cloudy to cloudless (or vice versa) comprises an additional phase called 'transition zone,' in which the characteristics of the particle suspension lay between those corresponding to pure clouds and atmospheric aerosols. This phase, however, is usually considered, in atmospheric monitoring and modeling, as an area containing either aerosol or thin clouds. A sensitivity analysis has been performed to assess the longwave radiative effects resulting from different approximations to the transition zone for three radiation parameterizations included in the Weather Research and Forecasting Model. The parameterizations produce important differences (up to 60 W m−2) between radiative effects of optically thin layers of aerosols and clouds (as surrogates for transition zone suspensions) in the longwave region, both at the top and bottom of the atmosphere. Also, differences are greater if the suspension of particles is located at higher altitudes, but smaller in high humidity conditions This study is funded by the Spanish Ministry of Economy and Competitiveness (project NUBESOL, CGL2014‐55976‐R), Spanish Ministry of Science and Innovation (project NUBESOL‐2, PID2019‐105901RB‐I00), and University of Girona (project PONTUdG2019/05). Babak Jahani holds a FI‐AGAUR PhD grant (2018FI_B_00830) provided by the Government of Catalonia (Universities and Research Secretariat) and the European Union |
Databáze: | OpenAIRE |
Externí odkaz: |