Developments in SPR Fragment Screening

Autor: Martine Pugnière, Alain Chavanieu
Přispěvatelé: Institut des Biomolécules Max Mousseron [Pôle Chimie Balard] (IBMM), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM), CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
Rok vydání: 2016
Předmět:
Zdroj: Expert Opinion on Drug Discovery
Expert Opinion on Drug Discovery, Informa Healthcare, 2016, 11 (5), pp.489-499. ⟨10.1517/17460441.2016.1160888⟩
ISSN: 1746-045X
1746-0441
DOI: 10.1517/17460441.2016.1160888
Popis: International audience; INTRODUCTION:Fragment-based approaches have played an increasing role alongside high-throughput screening in drug discovery for 15 years. The label-free biosensor technology based on surface plasmon resonance (SPR) is now sensitive and informative enough to serve during primary screens and validation steps.AREAS COVERED:In this review, the authors discuss the role of SPR in fragment screening. After a brief description of the underlying principles of the technique and main device developments, they evaluate the advantages and adaptations of SPR for fragment-based drug discovery. SPR can also be applied to challenging targets such as membrane receptors and enzymes.EXPERT OPINION:The high-level of immobilization of the protein target and its stability are key points for a relevant screening that can be optimized using oriented immobilized proteins and regenerable sensors. Furthermore, to decrease the rate of false negatives, a selectivity test may be performed in parallel on the main target bearing the binding site mutated or blocked with a low-off-rate ligand. Fragment-based drug design, integrated in a rational workflow led by SPR, will thus have a predominant role for the next wave of drug discovery which could be greatly enhanced by new improvements in SPR devices.
Databáze: OpenAIRE