On absolute summability for double triangle matrices
Autor: | Hamdullah Şevli, Ekrem Savaş |
---|---|
Přispěvatelé: | Bölüm Yok |
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Mathematica Slovaca. 60:495-506 |
ISSN: | 1337-2211 0139-9918 |
DOI: | 10.2478/s12175-010-0028-4 |
Popis: | A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a double triangle T to be a bounded operator on Open image in new window ; i.e., T ∈ B ( Open image in new window ) for the sequence space Open image in new window defined below. As special summability methods T we consider weighted mean and double Cesaro, (C, 1, 1), methods. As a corollary we obtain necessary and sufficient conditions for a double triangle T to be a bounded operator on the space Open image in new window of double sequences of bounded variation. |
Databáze: | OpenAIRE |
Externí odkaz: |