Order convergence in infinite-dimensional vector lattices is not topological
Autor: | Dabboorasad, Yousef A.m., Emelyanov, E YU, Marabeh, Maa |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Popis: | In this note, we show that the order convergence in a vector lattice is not topological unless . Furthermore, we show that, in atomic order continuous Banach lattices, the order convergence is topological on order intervals. Subjects: Functional Analysis (math. FA) MSC classes: 46A16, 46A40, 46B30 Cite as: arXiv: 1705.09883 [math. FA] (or arXiv: 1705.09883 v1 [math. FA] for this version) Submission history From: Yousef Dabboorasad [view email] [v1] Sun, 28 May 2017 01: 38: 39 GMT (6kb) |
Databáze: | OpenAIRE |
Externí odkaz: |