Quickest detection in practice in presence of seasonality: an illustration with call center data

Autor: Patrick Laub, Nicole El Karoui, Stéphane Loisel, Yahia Salhi
Přispěvatelé: Laboratoire de Sciences Actuarielle et Financière (SAF), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Loisel, Stéphane
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Data analytics and Models for Insurance
Data analytics and Models for Insurance, 2020
HAL
Popis: In this chapter, we explain how quickest detection algorithms can be useful for risk management in presence of seasonality. We investigate the problem of detecting fast enough cases when a call center will need extra staff in a near future with a high probability. We illustrate our findings on real data provided by a French insurer. We also discuss the relevance of the CUSUM algorithm and of some machine-learning type competitor for this applied problem.
Databáze: OpenAIRE