The Gamma and Strominger–Yau–Zaslow conjectures: a tropical approach to periods

Autor: Sheel Ganatra, Nick Sheridan, Hiroshi Iritani, Mohammed Abouzaid
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Geom. Topol. 24, no. 5 (2020), 2547-2602
ABOUZAID, MOHAMMED, Ganatra, S, IRITANI, HIROSHI & Sheridan, N 2020, ' The Gamma and Strominger-Yau-Zaslow conjectures: a tropical approach to periods ', Geometry and Topology, vol. 24, no. 5, pp. 2547–2602 . https://doi.org/10.2140/gt.2020.24.2547
DOI: 10.2140/gt.2020.24.2547
Popis: We propose a new method to compute asymptotics of periods using tropical geometry, in which the Riemann zeta values appear naturally as error terms in tropicalization. Our method suggests how the Gamma class should arise from the Strominger-Yau-Zaslow conjecture. We use it to give a new proof of (a version of) the Gamma Conjecture for Batyrev pairs of mirror Calabi-Yau hypersurfaces.
Comment: 55 pages, 7 figures, v3: added reference to arXiv:2205.00814, in which Yuto Yamamoto points out and fixes an error in our Lemma 5.6. The main results are unaffected
Databáze: OpenAIRE