Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly

Autor: Jonas Ranft, Martin Behrndt, Thomas Risler, Carl-Philipp Heisenberg, Nicolas Minc, Pedro Campinho
Přispěvatelé: Institute of Science and Technology [Klosterneuburg, Austria] (IST Austria), Physico-Chimie-Curie (PCC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Physik komplexer Systeme (MPI-PKS), Max-Planck-Gesellschaft, Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institute of Science and Technology [Austria] (IST Austria), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), Institute of Science and Technology Austria (IST Austria), Institute of Science and Technology Austria, Centre National de la Recherche Scientifique (CNRS)-Institut Curie-Université Pierre et Marie Curie - Paris 6 (UPMC)
Rok vydání: 2015
Předmět:
Embryo
Nonmammalian

Cell
Epiboly
MESH: Gastrulation
Epithelium
Cell Fusion
Cell elongation
Myosin
MESH: Animals
Tissues and Organs (q-bio.TO)
Zebrafish
biology
Tension (physics)
Chemistry
Cell Polarity
Biomechanical Phenomena
Cell biology
medicine.anatomical_structure
MESH: Epithelial Cells
Biological Physics (physics.bio-ph)
MESH: Cell Division
MESH: Cell Polarity
Cell Division
MESH: Myosin Type II
MESH: Biomechanical Phenomena
[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]
FOS: Physical sciences
MESH: Zebrafish Proteins
Models
Biological

medicine
Animals
MESH: Cell Shape
Physics - Biological Physics
MESH: Zebrafish
Cell Shape
Myosin Type II
Gastrulation
MESH: Models
Biological

MESH: Embryo
Nonmammalian

Epithelial Cells
Quantitative Biology - Tissues and Organs
Cell Biology
Zebrafish Proteins
biology.organism_classification
Spindle apparatus
MESH: Epithelium
[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and Organogenesis
MESH: Cell Fusion
FOS: Biological sciences
MESH: Anisotropy
Anisotropy
Wound healing
Zdroj: Nature Cell Biology
Nature Cell Biology, 2013, 15 (12), pp.1405-14. ⟨10.1038/ncb2869⟩
Nature Cell Biology, Nature Publishing Group, 2013, 15 (12), pp.1405-14. ⟨10.1038/ncb2869⟩
ISSN: 1465-7392
1476-4679
DOI: 10.48550/arxiv.1505.01642
Popis: Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the Enveloping Cell Layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly.
Comment: Methods, supplementary information and associated references are available in the published online version of the paper at http://www.nature.com/doifinder/10.1038/ncb2869
Databáze: OpenAIRE