Degenerate elliptic problem with a singular nonlinearity

Autor: Abdelaaziz Sbai, Youssef El hadfi
Rok vydání: 2021
Předmět:
Zdroj: Complex Variables and Elliptic Equations. 68:701-718
ISSN: 1747-6941
1747-6933
DOI: 10.1080/17476933.2021.2014458
Popis: In this paper, we prove existence and regularity results for solutions of some nonlinear Dirichlet problems for an elliptic equation defined by a degenerate coercive operator and a singular right hand side. \begin{equation}\label{01} \left\{ \begin{array}{lll} -\displaystyle\mbox{div}( a(x,u,\nabla u))&=\displaystyle\frac{f}{u^{\gamma}} & \mbox{ in } \Omega \\ u&>0 &\mbox{ in }\Omega \\ u&=0 &\mbox{ on } \delta\Omega \end{array} \right. \end{equation} where $\Omega $ is bounded open subset of $I\!\!R^{N}(N\geq2),$ $\gamma>0$ and $ f$ is a nonnegative function that belongs to some Lebesgue space.
Databáze: OpenAIRE