Structure and composition of Zn(x)Cd(1-xS) films synthesized through chemical bath deposition

Autor: Stephen A. Campbell, B. Selin Tosun, Chelsea Pettit, Eray S. Aydil
Rok vydání: 2012
Předmět:
Zdroj: ACS applied materialsinterfaces. 4(7)
ISSN: 1944-8252
Popis: Zinc cadmium sulfide (ZnxCd1-xS) thin films grown through chemical bath deposition are used in chalcopyrite solar cells as the buffer layer between the n-type zinc oxide and the p-type light absorbing chalcopyrite film. To optimize energetic band alignment and optical absorption, advanced solar cell architectures require the ability to manipulate x as a function of distance from the absorber-ZnCdS interface. Herein, we investigate the fundamental factors that govern the evolution of the composition as a function of depth in the film. By changing the initial concentrations of Zn and Cd salts in the bath, the entire range of overall compositions ranging from primarily cubic ZnS to primarily hexagonal CdS could be deposited. However, films are inhomogeneous and x varies significantly as function of distance from the film-substrate interface. Films with high overall Zn concentration (x > 0.5) exhibit a Cd-rich layer near the film-substrate interface because Cd is more reactive than Zn. This layer is typically beneath a nearly pure ZnS film that forms after the Cd-rich layers are deposited and Cd is depleted in the bath. In films with high overall Cd concentration (x < 0.5) the Zn concentration rises towards the film's surface. Fortunately, these gradients are favorable for solar cells based on low band gap chalcopyrite films.
Databáze: OpenAIRE