Nearly optimal scaling in the SR decomposition
Autor: | Sanja Singer, Heike Faßbender, Miroslav Rozložník |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
SR decomposition
scaling condition number Numerical Analysis Algebra and Number Theory Generalization Diagonal Mathematical analysis MathematicsofComputing_NUMERICALANALYSIS Block (permutation group theory) Block matrix Numerical Analysis (math.NA) Decomposition 65F25 65F35 65F05 Triangular form FOS: Mathematics Discrete Mathematics and Combinatorics Optimal scaling Geometry and Topology Mathematics - Numerical Analysis Row Mathematics |
Popis: | In this paper we analyze the nearly optimal block diagonal scalings of the rows of one factor and the columns of the other factor in the triangular form of the SR decomposition. The result is a block generalization of the result of the van der Sluis about the almost optimal diagonal scalings of the general rectangular matrices. |
Databáze: | OpenAIRE |
Externí odkaz: |