A relative 2-nerve

Autor: Walker H. Stern, Fernando Abellán García, Tobias Dyckerhoff
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Algebr. Geom. Topol. 20, no. 6 (2020), 3147-3182
Popis: In this work, we introduce a 2-categorical variant of Lurie's relative nerve functor. We prove that it defines a right Quillen equivalence which, upon passage to $\infty$-categorical localizations, corresponds to Lurie's scaled unstraightening equivalence. In this $\infty$-bicategorical context, the relative 2-nerve provides a computationally tractable model for the Grothendieck construction which becomes equivalent, via an explicit comparison map, to Lurie's relative nerve when restricted to 1-categories.
Comment: 30 pages, 1 figure, v2:minor revisions, v3: final version accepted for publication in Algebr. Geom. Topol
Databáze: OpenAIRE