Curvelet Based Contrast Enhancement in Fluoroscopic Sequences

Autor: Jérémie Pescatore, Jocelyn Chanussot, Carole Amiot, Michel Desvignes, C. Girard
Přispěvatelé: Thales Electron Devices, GIPSA - Communication Information and Complex Systems (GIPSA-CICS), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), GIPSA - Signal Images Physique (GIPSA-SIGMAPHY)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Noise reduction
02 engineering and technology
Radiation Dosage
030218 nuclear medicine & medical imaging
Image (mathematics)
03 medical and health sciences
0302 clinical medicine
0202 electrical engineering
electronic engineering
information engineering

Curvelet
Image Processing
Computer-Assisted

X-ray imaging and computed tomography
Computer vision
Electrical and Electronic Engineering
Mathematics
Image enhancement/restoration
Sequence
Radiological and Ultrasound Technology
Spatial filter
business.industry
Contrast (statistics)
Computer Science Applications
Visualization
Curvelets
Fluoroscopy
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
020201 artificial intelligence & image processing
Artificial intelligence
Noise (video)
business
Tomography
X-Ray Computed

Software
Algorithms
Zdroj: IEEE Transactions on Medical Imaging
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2015, 34 (1), pp.137-147. ⟨10.1109/TMI.2014.2349034⟩
ISSN: 0278-0062
DOI: 10.1109/TMI.2014.2349034⟩
Popis: International audience; —Image guided interventions have seen growing interest in recent years. The use of X-rays for the procedure impels limiting the dose over time. Image sequences obtained thereby exhibit high levels of noise and very low contrasts. Hence, the development of efficient methods to enable optimal visualization of these sequences is crucial. We propose an original denoising method based on the curvelet transform. First, we apply a recursive temporal filter to the curvelet coefficients. As some residual noise remains, a spatial filtering is performed in the second step, which uses a magnitude-based classification and a contextual comparison of curvelet coefficients. This procedure allows to denoise the sequence while preserving low-contrasted structures, but does not improve their contrast. Finally, a third step is carried out to enhance the features of interest. For this, we propose a line enhancement technique in the curvelet domain. Indeed, thin structures are sparsely represented in that domain, allowing a fast and efficient detection. Quantitative and qualitative evaluations performed on synthetic and real low-dose sequences demonstrate that the proposed method enables a 50% dose reduction.
Databáze: OpenAIRE