Image-Based Time Series Representations for Pixelwise Eucalyptus Region Classification: A Comparative Study

Autor: Ricardo da Silva Torres, Guerric Le Maire, Rubens Augusto Camargo Lamparelli, Danielle Dias, Nathalia Menini, Ulisses Dias
Přispěvatelé: University of Campinas [Campinas] (UNICAMP), Universidade Estadual de Campinas (UNICAMP), Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Norwegian University of Science and Technology [Gjøvik] (NTNU), Norwegian University of Science and Technology (NTNU)
Rok vydání: 2020
Předmět:
Télédétection
Computer science
Plantations
Feature extraction
0211 other engineering and technologies
Time series analysis
Imagerie par satellite
02 engineering and technology
[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture
forestry

K01 - Foresterie - Considérations générales
image representation
Electrical and Electronic Engineering
Time series
021101 geological & geomatics engineering
Gramian matrix
Vegetation mapping
Eucalyptus
pixelwise image classification
Series (mathematics)
Contextual image classification
U10 - Informatique
mathématiques et statistiques

business.industry
Deep learning
Image coding
Pattern recognition
Remote sensing
Classification
Geotechnical Engineering and Engineering Geology
Feature (computer vision)
Task analysis
Artificial intelligence
time series
U30 - Méthodes de recherche
business
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Analyse de séries chronologiques
Analyse d'image
Zdroj: IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters, IEEE-Institute of Electrical and Electronics Engineers, 2020, 17 (8), pp.1450-1454. ⟨10.1109/LGRS.2019.2946951⟩
ISSN: 1558-0571
1545-598X
Popis: Pixelwise image classification based on time series profiles has been very effective in several applications. In this letter, we investigate recently proposed image-based time series encoding approaches [e.g., Gramian angular summation field/Gramian angular difference field (GASF/GADF) and Markov transition field (MTF)] to support the identification of eucalyptus regions in remote sensing images. We perform a comparative study concerning the combination of image-based representations suitable for encoding the most important time series patterns with the ability of state-of-the-art deep-learning-based approaches for characterizing image visual properties. The comparative study demonstrates that the evaluated image representations, combined with different deep learning feature extractors lead to highly effective classification results, which are superior to those of recently proposed methods for time-series-based eucalyptus plantation detection.
Databáze: OpenAIRE