Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions
Autor: | François Renard, Leander Michels, Jessica McBeck, Kamila Gawel, Susan A. Carroll, Jaisree Iyer, Alain Gibaud, Elvia Anabela Chavez Panduro, Benoit Cordonnier, Dag W. Breiby, Ingrid Børve, Stuart D.C. Walsh, Malin Torsæter, Henning Osholm Sørensen, M. Rogowska |
---|---|
Přispěvatelé: | SINTEF Energy Research, Department of Physics [Trondheim] (Physics NTNU), Norwegian University of Science and Technology [Trondheim] (NTNU), Norwegian University of Science and Technology (NTNU)-Norwegian University of Science and Technology (NTNU), European Synchroton Radiation Facility [Grenoble] (ESRF), University of Oslo (UiO), SINTEF Industry, Lawrence Livermore National Laboratory (LLNL), Department of Chemistry [Copenhagen], Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Monash university, Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
PHASE CONTRAST
Carbonation Flow (psychology) MATERIALS RESEARCH Cement 010501 environmental sciences 01 natural sciences 3D dynamic X-ray micro computed tomography DIGITAL VOLUME CORRELATION law.invention law TOMOGRAPHY CO2 storage STRAIN LOCALIZATION Environmental Chemistry H WELL CEMENT REACTIVE TRANSPORT Dissolution TEMPERATURE 0105 earth and related environmental sciences Geochemical modeling Reservoir Oil reservoir [PHYS]Physics [physics] Petroleum engineering IN SITU AND REAL-TIME 3D MICROTOMOGRAPHY PHASE CONTRAST MICROTOMOGRAPHY General Chemistry Petroleum reservoir Supercritical fluid INTEGRITY Portland cement Density changes Matematikk og naturvitenskap: 400 [VDP] Mathematics and natural scienses: 400 [VDP] Emissions IN SITU PRECIPITATION Environmental science MORPHOLOGY MICROTOMOGRAPHY CO2 IN SITU EXPERIMENTS 3D |
Zdroj: | Chavez Panduro, E A, Cordonnier, B, Gawel, K, Børve, I, Iyer, J, Carroll, S A, Michels, L, Rogowska, M, McBeck, J A, Sørensen, H O, Walsh, S D C, Renard, F, Gibaud, A, Torsæter, M & Breiby, D W 2020, ' Real Time 3D Observations of Portland Cement Carbonation at CO 2 Storage Conditions ', Environmental Science and Technology, vol. 54, no. 13, pp. 8323-8332 . https://doi.org/10.1021/acs.est.0c00578 Environmental Science and Technology Environmental Science and Technology, 2020, 54 (13), pp.8323-8332. ⟨10.1021/acs.est.0c00578⟩ 'Environmental Science and Technology ', vol: 54, pages: 8323-8332 (2020) |
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.0c00578 |
Popis: | Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
Databáze: | OpenAIRE |
Externí odkaz: |