Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions

Autor: François Renard, Leander Michels, Jessica McBeck, Kamila Gawel, Susan A. Carroll, Jaisree Iyer, Alain Gibaud, Elvia Anabela Chavez Panduro, Benoit Cordonnier, Dag W. Breiby, Ingrid Børve, Stuart D.C. Walsh, Malin Torsæter, Henning Osholm Sørensen, M. Rogowska
Přispěvatelé: SINTEF Energy Research, Department of Physics [Trondheim] (Physics NTNU), Norwegian University of Science and Technology [Trondheim] (NTNU), Norwegian University of Science and Technology (NTNU)-Norwegian University of Science and Technology (NTNU), European Synchroton Radiation Facility [Grenoble] (ESRF), University of Oslo (UiO), SINTEF Industry, Lawrence Livermore National Laboratory (LLNL), Department of Chemistry [Copenhagen], Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Monash university, Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
PHASE CONTRAST
Carbonation
Flow (psychology)
MATERIALS RESEARCH
Cement
010501 environmental sciences
01 natural sciences
3D dynamic X-ray micro computed tomography
DIGITAL VOLUME CORRELATION
law.invention
law
TOMOGRAPHY
CO2 storage
STRAIN LOCALIZATION
Environmental Chemistry
H WELL CEMENT
REACTIVE TRANSPORT
Dissolution
TEMPERATURE
0105 earth and related environmental sciences
Geochemical modeling
Reservoir
Oil reservoir
[PHYS]Physics [physics]
Petroleum engineering
IN SITU AND REAL-TIME 3D MICROTOMOGRAPHY
PHASE CONTRAST MICROTOMOGRAPHY
General Chemistry
Petroleum reservoir
Supercritical fluid
INTEGRITY
Portland cement
Density changes
Matematikk og naturvitenskap: 400 [VDP]
Mathematics and natural scienses: 400 [VDP]
Emissions
IN SITU
PRECIPITATION
Environmental science
MORPHOLOGY
MICROTOMOGRAPHY
CO2
IN SITU EXPERIMENTS
3D
Zdroj: Chavez Panduro, E A, Cordonnier, B, Gawel, K, Børve, I, Iyer, J, Carroll, S A, Michels, L, Rogowska, M, McBeck, J A, Sørensen, H O, Walsh, S D C, Renard, F, Gibaud, A, Torsæter, M & Breiby, D W 2020, ' Real Time 3D Observations of Portland Cement Carbonation at CO 2 Storage Conditions ', Environmental Science and Technology, vol. 54, no. 13, pp. 8323-8332 . https://doi.org/10.1021/acs.est.0c00578
Environmental Science and Technology
Environmental Science and Technology, 2020, 54 (13), pp.8323-8332. ⟨10.1021/acs.est.0c00578⟩
'Environmental Science and Technology ', vol: 54, pages: 8323-8332 (2020)
ISSN: 0013-936X
1520-5851
DOI: 10.1021/acs.est.0c00578
Popis: Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
Databáze: OpenAIRE