Periodic representations in algebraic bases

Autor: Tomáš Vávra, Vítězslav Kala
Rok vydání: 2018
Předmět:
Zdroj: Monatshefte für Mathematik. 188:109-119
ISSN: 1436-5081
0026-9255
DOI: 10.1007/s00605-017-1151-x
Popis: We study periodic representations in number systems with an algebraic base $$\beta $$ (not a rational integer). We show that if $$\beta $$ has no Galois conjugate on the unit circle, then there exists a finite integer alphabet $$\mathcal A$$ such that every element of $$\mathbb Q(\beta )$$ admits an eventually periodic representation with base $$\beta $$ and digits in $$\mathcal A$$ .
Databáze: OpenAIRE