Precise large deviation asymptotics for products of random matrices

Autor: Hui Xiao, Ion Grama, Quansheng Liu
Přispěvatelé: Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS), Grama, Ion
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Stochastic Processes and their Applications
Stochastic Processes and their Applications, Elsevier, 2020, 130, pp.5213-5242
ISSN: 0304-4149
Popis: Let ( g n ) n ⩾ 1 be a sequence of independent identically distributed d × d real random matrices with Lyapunov exponent λ . For any starting point x on the unit sphere in R d , we deal with the norm | G n x | , where G n ≔ g n … g 1 . The goal of this paper is to establish precise asymptotics for large deviation probabilities P ( log | G n x | ⩾ n ( q + l ) ) , where q > λ is fixed and l is vanishing as n → ∞ . We study both invertible matrices and positive matrices and give analogous results for the couple ( X n x , log | G n x | ) with target functions, where X n x = G n x ∕ | G n x | . As applications we improve previous results on the large deviation principle for the matrix norm ‖ G n ‖ and obtain a precise local limit theorem with large deviations.
Databáze: OpenAIRE