A pressuremeter-based evaluation of structure in London Clay using a kinematic hardening constitutive model
Autor: | Antonio Gens, Stelios Panayides, Mohamed Rouainia, Marcos Arroyo |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. MSR - Mecànica del Sòls i de les Roques |
Rok vydání: | 2020 |
Předmět: |
021110 strategic
defence & security studies Sols argilosos Disturbance (geology) Clay soils Constitutive equation 0211 other engineering and technologies Structure 02 engineering and technology Mechanics Geotechnical Engineering and Engineering Geology Measure (mathematics) Pore pressure Interpretation (model theory) Pore water pressure Numerical modelling Solid mechanics Earth and Planetary Sciences (miscellaneous) Calibration Clays Self-boring pressuremeter Enginyeria civil::Geotècnia::Mecànica de sòls [Àrees temàtiques de la UPC] Constitutive relations Geology 021101 geological & geomatics engineering Parametric statistics |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 1861-1133 1861-1125 |
DOI: | 10.1007/s11440-020-00940-w |
Popis: | The self-boring pressuremeter (SBP) test was designed to measure in situ engineering properties of the ground with a relatively small amount of disturbance. The properties that may be inferred from the test depend on the mechanical model used for its interpretation and on the significance given to other previously available information. In this paper, numerical modelling using the advanced kinematic hardening structure model (KHSM) for natural soils has been performed to investigate the influence of the initial structure and the degradation of structure on the SBP cavity pore pressures and expansion curves within London Clay. The validation of the KHSM against well-known analytical solutions and the calibration procedure used to identify the material parameters are presented. The numerical analyses reveal that the simulations of the SBP tests using the KHSM model provide a very close match of the expansion curves to the experimental data, but underestimate the pore pressures at the initial stage of the SBP expansion test. A parametric study has been carried out to determine the effects induced by the parameters of the destructuration model along with the disturbance experienced during the SBP installation, which is difficult to estimate in situ. Two disturbance scenarios were considered where the initial structure was assumed to vary linearly across an area close to the wall of the cavity. These simulations indicate that accounting for installation disturbance leads to a substantial improvement in pore pressure predictions for the SBP. The first author would like to acknowledge funding provided by the Engineering and Physical Sciences Research Council (EPSRC) GR/S84897/01. The authors are grateful to Cambridge Insitu Ltd for making available the pressuremeter data on London Clay. |
Databáze: | OpenAIRE |
Externí odkaz: |