A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings

Autor: Andreas Sumper, Jordi Cipriano, Stoyan Danov, Gerard Mor, Benedetto Grillone
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Enginyeria Elèctrica, Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya. CITCEA - Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Edificis -- Estalvi d'energia
Consumo energético
Energy & Fuels
Computer science
Energies [Àrees temàtiques de la UPC]
020209 energy
3306.09 Transmisión y Distribución
Building energy retrofit
02 engineering and technology
Management
Monitoring
Policy and Law

Energy savings estimation
7. Clean energy
Generalized additive models
Centro comercial
3311.06 Instrumentos Eléctricos
Data-driven
Measurement and verification
Software
EnergyPlus -software
020401 chemical engineering
11. Sustainability
0202 electrical engineering
electronic engineering
information engineering

0204 chemical engineering
Cluster analysis
Building energy simulation
1203.26 Simulación
Eficiencia energética
3311.05 Equipos Eléctricos de Control
business.industry
Mechanical Engineering
3305.17 Edificios Industriales y Comerciales
Building energy performance
Data driven approach
Building and Construction
Simulación energética - herramientas
Buildings -- Energy conservation
Comportamiento energético
Reliability engineering
Energy conservation
General Energy
Ahorro energético
3311.02 Ingeniería de Control
Measurement and Verification
business
Energy (signal processing)
Efficient energy use
Zdroj: Repositorio Abierto de la UdL
Universitad de Lleida
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Applied Energy
Popis: Methods to obtain accurate estimations of the savings generated by building energy efficiency interventions are a topic of great importance, and considered to be one of the keys to increase capital investments in energy conservation strategies worldwide. In this study, a novel data-driven methodology is proposed for the measurement and verification of energy efficiency savings, with special focus on commercial buildings and facilities. The presented approach involves building use characterization by means of a clustering technique that allows to extract typical consumption profile patterns. These are then used, in combination with an innovative technique to evaluate the building’s weather dependency, to design a model able to provide accurate dynamic estimations of the achieved energy savings. The method was tested on synthetic datasets generated using the building energy simulation software EnergyPlus, as well as on monitoring data from real-world buildings. The results obtained with the proposed methodology were compared with the ones provided by applying the time-of-week-and-temperature (TOWT) model, showing up to 10% CV(RMSE) improvement, depending on the case in analysis. Furthermore, a comparison with the deterministic results provided by EnergyPlus showed that the median estimated savings error was always lower than 3% of the total reporting period consumption, with similar accuracy retained even when reducing the total training data available. This work was supported by the European Commission through the H2020 project SENSEI [grant number 847066]. The authors thank the Catalan Institute of Energy (ICAEN) for providing the monitoring and EEM data that was analysed in the case study.
Databáze: OpenAIRE