The Sierpi\'nski gasket as the Martin boundary of a non-isotropic Markov chain
Autor: | Tony Samuel, Karenina Sender, Marc Kesseböhmer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Popis: | In 2012 Lau and Ngai, motivated by the work of Denker and Sato, gave an example of an isotropic Markov chain on the set of finite words over a three letter alphabet, whose Martin boundary is homeomorphic to the Sierpi\'nski gasket. Here, we extend the results of Lau and Ngai to a class of non-isotropic Markov chains. We determine the Martin boundary and show that the minimal Martin boundary is a proper subset of the Martin boundary. In addition, we give a description of the set of harmonic functions. Comment: 13 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |