Hilbert curve vs Hilbert space: exploiting fractal 2D covering to increase tensor network efficiency
Autor: | Vittorio Giovannetti, Giovanni Cataldi, Simone Montangero, Nicola Dalla Pozza, Simone Notarnicola, Giuseppe Magnifico, Ashkan Abedi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Physics and Astronomy (miscellaneous)
QC1-999 Structure (category theory) FOS: Physical sciences Computer Science::Digital Libraries 01 natural sciences 010305 fluids & plasmas symbols.namesake Condensed Matter - Strongly Correlated Electrons Fractal 0103 physical sciences MATRIX RENORMALIZATION-GROUP Tensor 010306 general physics Condensed Matter - Statistical Mechanics Mathematics Quantum Physics Statistical Mechanics (cond-mat.stat-mech) Strongly Correlated Electrons (cond-mat.str-el) Physics Mathematical analysis Hilbert space Hilbert curve Computational Physics (physics.comp-ph) Atomic and Molecular Physics and Optics Matrix multiplication Lattice (module) STATES Quantum Gases (cond-mat.quant-gas) DENSITY Computer Science::Mathematical Software symbols Ising model Quantum Physics (quant-ph) Condensed Matter - Quantum Gases Physics - Computational Physics |
Zdroj: | Quantum, Vol 5, p 556 (2021) Quantum (Vienna) 5 (2021):--–--. doi:10.22331/Q-2021-09-29-556 info:cnr-pdr/source/autori:Cataldi G.; Abedi A.; Magnifico G.; Notarnicola S.; Pozza N.D.; Giovannetti V.; Montangero S./titolo:Hilbert curve vs Hilbert space: exploiting fractal 2D covering to increase tensor network efficiency/doi:10.22331%2FQ-2021-09-29-556/rivista:Quantum (Vienna)/anno:2021/pagina_da:--/pagina_a:--/intervallo_pagine:--–--/volume:5 Quantum |
DOI: | 10.22331/Q-2021-09-29-556 |
Popis: | We present a novel mapping for studying 2D many-body quantum systems by solving an effective, one-dimensional long-range model in place of the original two-dimensional short-range one. In particular, we address the problem of choosing an efficient mapping from the 2D lattice to a 1D chain that optimally preserves the locality of interactions within the TN structure. By using Matrix Product States (MPS) and Tree Tensor Network (TTN) algorithms, we compute the ground state of the 2D quantum Ising model in transverse field with lattice size up to $64\times64$, comparing the results obtained from different mappings based on two space-filling curves, the snake curve and the Hilbert curve. We show that the locality-preserving properties of the Hilbert curve leads to a clear improvement of numerical precision, especially for large sizes, and turns out to provide the best performances for the simulation of 2D lattice systems via 1D TN structures. 17 pages, 13 figures |
Databáze: | OpenAIRE |
Externí odkaz: |