Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models
Autor: | Fernando López, José L. Mascareñas, Beatriz Pelaz, María Tomás-Gamasa, Carolina Carrillo-Carrión, Paolo Destito, Aitor Alvarez, Raquel Martínez, Pablo del Pino |
---|---|
Přispěvatelé: | Universidade de Santiago de Compostela. Centro de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela. Departamento de Física de Partículas, Universidade de Santiago de Compostela. Departamento de Química Inorgánica, Universidade de Santiago de Compostela. Departamento de Química Orgánica |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Bioorthogonal chemistry Passivation biocompatible organometallic catalyst General Physics and Astronomy chemistry.chemical_element Nanotechnology Nanoreactor 010402 general chemistry 01 natural sciences Article Catalysis chemistry.chemical_compound Imidazolate core-shell nanocomposite General Materials Science Catalytic spheroid Intracellular catalysis diffusion-controlled reaction MOF 010405 organic chemistry General Engineering Core-shell nanocomposite General Chemistry Microporous material palladium bioorthogonal chemistry lcsh:QC1-999 3. Good health 0104 chemical sciences General Energy chemistry Diffusion-controlled reaction intracellular catalysis catalytic spheroid nanoreactor ZIF-8 lcsh:Physics Palladium Biocompatible organometallic catalyst |
Zdroj: | Minerva: Repositorio Institucional de la Universidad de Santiago de Compostela Universidad de Santiago de Compostela (USC) Cell Reports Physical Science, Vol 1, Iss 6, Pp 100076-(2020) Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela instname Cell Reports. Physical Science |
Popis: | Summary Translating the potential of transition metal catalysis to biological and living environments promises to have a profound impact in chemical biology and biomedicine. A major challenge in the field is the creation of metal-based catalysts that remain active over time. Here, we demonstrate that embedding a reactive metallic core within a microporous metal-organic framework-based cloak preserves the catalytic site from passivation and deactivation, while allowing a suitable diffusion of the reactants. Specifically, we report the fabrication of nanoreactors composed of a palladium nanocube core and a nanometric imidazolate framework, which behave as robust, long-lasting nanoreactors capable of removing propargylic groups from phenol-derived pro-fluorophores in biological milieu and inside living cells. These heterogeneous catalysts can be reused within the same cells, promoting the chemical transformation of recurrent batches of reactants. We also report the assembly of tissue-like 3D spheroids containing the nanoreactors and demonstrate that they can perform the reactions in a repeated manner. Graphical Abstract Highlights The MOF cloak allows diffusion of reactants while protecting the Pd catalytic chamber The MOF cloak provides for orthogonality (substrate selectivity) and biocompatibility The core-shell nanoreactors intracellularly process sequential batches of reactants Demonstration of a transition-metal promoted reaction in a living tissue model Martínez et al. demonstrate the feasibility of using core-shell Pd/MOF nanoreactors as intracellular metallo-catalysts, which can be reused within the same cells with recurrent batches of reactants, both in adherent cell cultures and in spheroids. The MOF-based shell preserves the integrity of the catalytic chamber while providing for bio-orthogonality. |
Databáze: | OpenAIRE |
Externí odkaz: |