Blossoming and Hermite-Padé Approximation for Hypergeometric Series

Autor: Marie-Laurence Mazure, Rachid Ait-Haddou
Přispěvatelé: King Fahd University of Petroleum and Minerals (KFUPM), Calcul des Variations, Géométrie, Image (CVGI), Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Numerical Algorithms
Numerical Algorithms, Springer Verlag, 2021, 88, pp.1183-1214. ⟨10.1007/s11075-021-01071-3⟩
Numerical Algorithms, 2021, 88, pp.1183-1214. ⟨10.1007/s11075-021-01071-3⟩
ISSN: 1017-1398
1572-9265
DOI: 10.1007/s11075-021-01071-3⟩
Popis: International audience; Based on the blossoming theory, in this work we develop a new method for deriving Hermite-Padé approximants of certain hypergeometric series. Its general principle consists in building identities generalising the Hermite identity for exponentials, and in then applying their blossomed versions to appropriate tuples to simultaneously produce explicit expressions of the approximants and explicit integral representations of the corresponding remainders. For binomial series we use classical blossoms while for q-hypergeometric series we have to use q-blossoms.
Databáze: OpenAIRE