Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction

Autor: Daniel D. Anselm, Harold L. Atkins, Jennifer M. Renaud, Ann Guo, Kathryn Williams, Ian G. Burwash, Christopher Glover, Cathy Kelly, Anjali H. Anselm, Rob S. Beanlands, Robert A. de Kemp, Jean N. DaSilva
Rok vydání: 2010
Předmět:
Zdroj: Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology. 18(4)
ISSN: 1532-6551
Popis: Reperfused myocardium post-acute myocardial infarction (AMI) may have altered metabolism with implications for therapy response and function recovery. We explored glucose utilization and the “reverse mismatch” (RMM) pattern (decreased F-18-fluorodeoxyglucose (FDG) uptake relative to perfusion) in patients who underwent mechanical reperfusion with percutaneous coronary intervention (PCI) for AMI. Thirty-one patients with anterior wall AMI treated with acute reperfusion, with left ventricular ejection fraction ≤45%, underwent rest rubidium-82 (Rb-82) and FDG PET 2-10 days post-AMI. Resting echocardiograms were used to assess wall motion abnormalities. Significant RMM occurred in 15 (48%) patients and was associated with a shorter time to PCI of 2.9 hours (2.2, 13.3 hours) compared to patients without significant RMM: 11.4 hours (3.9, 22.4 hours) (P = .03). Within the peri-infarct regions, segments with significant RMM were more likely to have wall motion abnormalities (OR = 2.3 (1.1, 4.7), P = .02) compared to segments without significant RMM. RMM is a common pattern on perfusion/FDG PET during the sub-acute phase following reperfusion of AMI and is associated with shorter times to PCI. Within the peri-infarct region, RMM occurs frequently and is more often associated with wall motion abnormalities than segments without RMM. Whether this represents a myocardial metabolic shift during the sub-acute phase of recovery warrants further study.
Databáze: OpenAIRE