Poisson modules and degeneracy loci

Autor: Marco Gualtieri, Brent Pym
Rok vydání: 2012
Předmět:
DOI: 10.48550/arxiv.1203.4293
Popis: In this paper, we study the interplay between modules and sub-objects in holomorphic Poisson geometry. In particular, we define a new notion of "residue" for a Poisson module, analogous to the Poincar\'e residue of a meromorphic volume form. Of particular interest is the interaction between the residues of the canonical line bundle of a Poisson manifold and its degeneracy loci---where the rank of the Poisson structure drops. As an application, we provide new evidence in favour of Bondal's conjecture that the rank \leq 2k locus of a Fano Poisson manifold always has dimension \geq 2k+1. In particular, we show that the conjecture holds for Fano fourfolds. We also apply our techniques to a family of Poisson structures defined by Fe\u{\i}gin and Odesski\u{\i}, where the degeneracy loci are given by the secant varieties of elliptic normal curves.
Comment: 33 pages
Databáze: OpenAIRE