Fast collective oscillations and clustering phenomena in an antiferromagnetic mean-field model
Autor: | Xavier Leoncini, Arthur Vesperini, Roberto Franzosi, Stefano Ruffo, Andrea Trombettoni |
---|---|
Přispěvatelé: | Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E7 Systèmes dynamiques : théories et applications, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente., Università degli Studi di Siena = University of Siena (UNISI) |
Rok vydání: | 2021 |
Předmět: |
General Mathematics
General Physics and Astronomy FOS: Physical sciences Ergodicity-breaking Physics - Classical Physics Kinetic energy Collective structure Hamitonian mean-field model Long-range interaction Out-ofequilibrium Quasi-stationary state Settore FIS/03 - Fisica della Materia symbols.namesake Magnetization Statistical physics [PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ComputingMilieux_MISCELLANEOUS Condensed Matter - Statistical Mechanics Physics Hamiltonian mechanics Statistical Mechanics (cond-mat.stat-mech) Applied Mathematics Classical Physics (physics.class-ph) Statistical and Nonlinear Physics Statistical mechanics Nonlinear Sciences - Chaotic Dynamics Physics - Plasma Physics Settore FIS/02 - Fisica Teorica Modelli e Metodi Matematici Plasma Physics (physics.plasm-ph) Microcanonical ensemble Mean field theory symbols Probability distribution Chaotic Dynamics (nlin.CD) Hamiltonian (quantum mechanics) |
Zdroj: | Chaos, solitons and fractals 153 (2021): 111487-1–111487-7. doi:10.1016/j.chaos.2021.111487 info:cnr-pdr/source/autori:Vesperini A., Franzosi R.,Ruffo S., Trombettoni A.,Leoncini/titolo:Fast collective oscillations and clustering phenomena in an antiferromagnetic mean-field model/doi:10.1016%2Fj.chaos.2021.111487/rivista:Chaos, solitons and fractals/anno:2021/pagina_da:111487-1/pagina_a:111487-7/intervallo_pagine:111487-1–111487-7/volume:153 Chaos, Solitons & Fractals Chaos, Solitons & Fractals, 2021, 153 (2), pp.111487. ⟨10.1016/j.chaos.2021.111487⟩ |
ISSN: | 0960-0779 1873-2887 |
DOI: | 10.48550/arxiv.2106.07392 |
Popis: | We study the out-of-equilibrium properties of the antiferromagnetic Hamiltonian Mean-Field model at low energy. In this regime, the Hamiltonian dynamics exhibits the presence of a long-lived metastable state where the rotators are gathered in a bicluster. This state is not predicted by equilibrium statistical mechanics in the microcanonical ensemble. Performing a low kinetic energy approximation, we derive the explicit expression of the magnetization vector as a function of time. We find that the latter displays coherent oscillations, and we show numerically that the probability distribution for its phase is bimodal or quadrimodal. We then look at the individual rotator dynamics as a motion in an external time-dependent potential, given by the magnetization. This dynamics exhibits two distinct time scales, with the fast one associated to the oscillations of the global magnetization vector. Performing an average over the fast oscillations, we derive an expression for the effective force acting on the individual rotator. This force is always bimodal, and determines a low frequency oscillation of the rotators. Our approach leads to a self-consistent theory linking the time-dependence of the magnetization to the motion of the rotators, providing a heuristic explanation for the formation of the bicluster. |
Databáze: | OpenAIRE |
Externí odkaz: |