Highly porous layers of silica nano-spheres sintered by drying: Scaling up of the elastic properties from the beads to the macroscopic mechanical properties

Autor: Cindy L. Rountree, Daniel Bonamy, Arnaud Lesaine, Georges Gauthier, Véronique Lazarus
Přispěvatelé: Fluides, automatique, systèmes thermiques (FAST), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la mécanique et Applications industrielles (IMSIA - UMR 9219), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), ANR-10-LABX-0032,LaSIPS,LABORATORY FOR SYSTEMS AND ENGINEERING OF PARIS SACLAY(2010), ANR-10-LABX-0039,PALM,Physics: Atoms, Light, Matter(2010), ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D)
Rok vydání: 2018
Předmět:
Materials science
drying of colloidal dispersions
FOS: Physical sciences
PACS numbers: 82.70 Dd
62.20.de
81.16.Dn

02 engineering and technology
Physics - Classical Physics
Condensed Matter - Soft Condensed Matter
mechanical properties
01 natural sciences
Homogenization (chemistry)
[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]
0103 physical sciences
Composite material
010306 general physics
Porosity
Anisotropy
[PHYS]Physics [physics]
Continuum mechanics
Multi-scale homogenization approaches
linear elasticity
Classical Physics (physics.class-ph)
Fracture mechanics
General Chemistry
particles sintering
021001 nanoscience & nanotechnology
Condensed Matter Physics
Soft Condensed Matter (cond-mat.soft)
0210 nano-technology
Porous medium
Contact area
Rule of mixtures
[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
highly interconnected porosity
Zdroj: Soft Matter
Soft Matter, Royal Society of Chemistry, 2018, 14 (19), pp.3987-3997. ⟨10.1039/c7sm02443f⟩
Soft Matter, Royal Society of Chemistry, 2018, 14 (19), pp.3987-3997. ⟨10.1039/C7SM02443F⟩
Soft Matter, 2018, 14 (19), pp.3987-3997. ⟨10.1039/C7SM02443F⟩
ISSN: 1744-683X
1744-6848
DOI: 10.48550/arxiv.1804.09421
Popis: International audience; Layers obtained by drying a colloidal dispersion of silica spheres are found to be a good benchmark to test the elastic behaviour of porous media, in the challenging case of high porosities and nano-sized microstructures. Classically used for these systems, Kendall's approach explicitly considers the effect of surface adhesive forces onto the contact area between the particles. This approach provides the Young's modulus using a single adjustable parameter (the adhesion energy) but provides no further information on the tensorial nature and possible anisotropy of elasticity. On the other hand, homogenization approaches (e.g. rule of mixtures, and Eshelby, Mori-Tanaka and self-consistent schemes), based on continuum mechanics and asymptotic analysis, provide the stiffness tensor from the knowledge of the porosity and the elastic constants of the beads. Herein, the self-consistent scheme accurately predicts both bulk and shear moduli, with no adjustable parameter, provided the porosity is less than 35%, for layers composed of particles as small as 15 nm in diameter. Conversely, Kendall's approach is found to predict the Young's modulus over the full porosity range. Moreover, the adhesion energy in Kendall's model has to be adjusted to a value of the order of the fracture energy of the particle material. This suggests that sintering during drying leads to the formation of covalent siloxane bonds between the particles.
Databáze: OpenAIRE